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Abstract
In this work we discuss the use of small-angle x-ray scattering methods
for investigating the temperature and pressure dependent structure and phase
behaviour of soft condensed matter and in particular of biomolecular systems,
such as lipid mesophases, model biomembrane systems as well as proteins
in solution. In addition to temperature, pressure has also been used as a
physical parameter in these studies, in particular for studying the energetics
and phase behaviour of these systems, but also because high pressure is
a feature of certain natural environments and because the high pressure
phase behaviour of biomolecules is also of importance for biotechnological
applications. By using the pressure jump relaxation technique in combination
with time-resolved synchrotron small-angle x-ray scattering, the kinetics of
biomolecular phase transitions can be investigated. We applied the technique for
studying lipid phase transitions and protein unfolding/refolding reactions. After
the discussion of the underlying theoretical concepts, several characteristic
examples are presented and discussed.

(Some figures in this article are in colour only in the electronic version)
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Abbreviations

SAXS small-angle x-ray scattering,
TRSAXS time-resolved small-angle x-ray scattering
MO monoolein
ME monoelaidin
LA lauric acid
DLPC 1,2-dilauroyl-sn-glycero-3-phosphatidylcholine (di-C12:0)

DPPC 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (di-C16:0)

DOPC 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (di-C18:1,cis)

DOPE 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (di-C18:1,cis)

DEPC 1,2-dielaidoyl-sn-glycero-3-phosphatidylcholine (di-C18:1,trans)

Snase staphylococcal nuclease

1. Introduction

The strongest impact of small-angle x-ray scattering (SAXS) in biophysical studies is in the
study of structural transitions of biomolecular systems, ranging from gross conformational
changes to assembly processes triggered by a variety of perturbations, such as by a biochemical
reaction or by a temperature or a pressure jump. The modification of the physico-chemical
variables (pH, ionic strength, concentration of reactants, temperature, pressure) can be made
gradually through the transition, i.e. the scattering patterns can be recorded at equilibrium at
a number of intermediate values. Furthermore, a fast perturbation may be provoked and one
follows the relaxation of the system to the new equilibrium state. This requires not only a very
intense x-ray beam, available at storage rings, but also instruments for rapid perturbation, such
as a fast mixing apparatus (stopped flow) to mix the biomolecule with substrates or to create
a pH or ionic strength jump, or a high pressure cell for applying well-defined pressure jumps.

The interest in pressure as a variable has been growing in physico-chemical studies of
biological and other soft condensed matter systems in recent years [1–6]. To probe the
concept of any energetic description and the resultant set of parameters necessary to provide
a general explanation of the phase behaviour of biomolecular systems, one needs to scan
the appropriate parameter space experimentally. To this end, pressure dependent studies
have also proven to be a very valuable tool. The pressures used to investigate biochemical
systems range from 1 to 10 kbar, where the solvent, water, is still in its liquid state at ambient
temperatures. Such pressures only change intermolecular distances and affect conformations
but do not change covalent bond distances or bond angles. The covalent structure of low
molecular weight biomolecules (peptides, lipids, saccharides), like the primary structure of
macromolecules (proteins, nucleic acids and polysaccharides), is not perturbed by pressures up
to about 20 kbar. Pressure acts predominantly on the spatial (secondary, tertiary, quaternary and
supramolecular) structures of macromolecules. Besides the general physico-chemical interest
in using high pressure as a tool for understanding the phase behaviour, structure and energetics
of biomolecules and amphiphiles in general, high pressure is also of biotechnological (e.g.,
for high pressure food processing) and physiological (e.g., for understanding the physiology
of deep-sea organisms living in cold and high pressure habitats) interest [7–11].

In this work, we first discuss the theoretical background for studying the structure and phase
behaviour of lyotropic lipid mesophases (figure 1) and model biomembrane systems using x-
ray small-angle scattering techniques. Then we discuss the pressure jump relaxation technique
for studying the kinetics of phase transformations between different lipid mesophases. Finally,
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Figure 1. A schematic drawing of lipid–water phases (Lc, lamellar crystalline; Lβ′ , Pβ′ , lamellar
gel; Lα , lamellar liquid crystalline; QG

II , QD
II , QP

II, inverse bicontinuous cubics; HII, inverse
hexagonal). The cubic phases are represented by the G, D and P minimal surfaces, which locate
the mid-planes of fluid lipid bilayers.

we illustrate the use of synchrotron x-ray scattering for studying protein structure in solution
and unfolding/refolding reactions of proteins. Several representative examples are given.

2. Experimental techniques

The experimental results presented in this work are mainly based on studies using SAXS
and wide-angle x-ray scattering (WAXS), partially also in combination with high pressure
techniques. The development of synchrotron radiation sources from multi-gigaelectronvolt
electron and positron storage rings increased the flux on the sample by factors of more than
105 as compared to using conventional laboratory x-ray sources. Use of these sources coupled
with efficient electronic detectors made it possible to start collecting SAXS and WAXS data on
rapid timescales, which can now go down to tens of milliseconds or even below, thus allowing
one to perform also kinetic structural investigations.

For the high pressure x-ray studies, flat diamond cells are generally used. The x-ray
pressure cell (figure 2) is home-built and made from stainless steel or a Ni–Cr–Co alloy
(NIMONIC 90) of high tensile strength [12, 13]. It has a high pressure connection to the
pressurizing system and a bore for a thermocouple. Temperature control is achieved by
circulating water from a thermostat through the outside jacket of the vessel. The sample
temperature can be controlled within ±0.2 ◦C. For pressures up to 8 kbar, flat diamond
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4
3 5

2

1

610  mm

Figure 2. The high pressure sample cell for SAXS studies. The cell is made from NIMONIC 90
alloy with diamond windows (0.8–1 mm thickness) and can be used up to about 8 kbar (1: sample;
2: x-ray beam; 3: high pressure connection; 4: thermostating water circuit; 5: diamond window;
6: closure nut).

windows of 0.8–1 mm thickness are used. The window holders are sealed with Viton-O-
rings and are tightened by closure nuts. The sample of 40 µl volume is held in a PTFE ring
that is closed with two Mylar foils glued on both sides of the ring to separate the sample
from the pressurizing medium (distilled water). The pressurizing system consists of a Heise
Bourdon gauge (or an electronic pressure gauge, Sensotec UHP 721-03 or Burster A5-UHP
Type 8270) and a hand-operated pressure generator. Pressure jumps are performed by means
of a computer-controlled opening of an air-operated valve between the high pressure cell and
a liquid reservoir. With this pressure jump apparatus, fast jumps (<5 ms) are possible with
variable amplitudes. To minimize adiabatic temperature changes in the course of a kinetic
experiment (about 2 mK bar−1 under pure adiabatic conditions), the high pressure sample
cell was constructed to hold only a very small volume of the pressurizing medium. The
pressure jump technique has been shown to offer several advantages over the temperature
jump approach:

(1) Pressure propagates rapidly so sample inhomogeneity is a minor problem.
(2) Pressure jumps can be performed bidirectionally, i.e. with increasing or decreasing

pressure.
(3) In the case of fully reversible structural changes of the sample, pressure jumps can be

repeated with identical amplitudes to allow an averaging of the diffraction data over
several jumps and an improvement of the counting statistics.

The static and time-resolved diffraction data presented here have been taken using CCD
x-ray detectors (FReLoN or MAR CCD detectors), which consist of a two-dimensional field
of 1024 × 1024 pixels that can be read into a computer (with maximally 14 frames s−1). The
faster wire detectors allow shorter acquisition times but, as the acquisition time decreases, the
count rate decreases in the same manner. For systems which show intense Bragg scattering,
such as lipid mesophases, the exposure time per frame can be as low as 1 ms or even below. For
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dilute protein solutions in a high pressure sample environment, the scattering is much weaker
so exposure times of the order of 10–100 ms are required [12].

3. Theoretical background

In the following, the basic theoretical concepts for analysing x-ray scattering patterns from
partially ordered systems (e.g., membranes, lipid mesophases) and particles (e.g., proteins) in
solution are discussed.

3.1. Partially ordered systems: membrane and lipid mesophase diffraction patterns

Biological membranes are the barriers of cells and organelles against the outside medium.
They consist of a fluid lipid bilayer with embedded proteins. The amphiphilic character of the
lipids with their polar head-group and apolar acyl chains is responsible for the two-dimensional
geometry of the lipid matrix. In biophysical studies, lipid bilayer model systems consisting of
a few components are generally studied. For investigation of the model biomembrane systems,
x-ray (and neutron) diffraction is the most powerful tool for characterizing the topology and
packing of the membrane and for following up its changes in environmental conditions, such
as ionic strength, temperature and pressure.

Several sample preparation techniques may be used for structural investigations [14–17].
Lipid multi-bilayer films can be prepared and deposited on solid surfaces, such as glass slides,
where they adopt a predominant orientation parallel to the bilayer surface. The slide, the level
of hydration (relative humidity) of which has to be carefully controlled, is then aligned in an
x-ray beam that hits the film tangentially. In the diffraction pattern, equidistant intensity spots
on the meridian of the x-ray film exhibit that we have a one-dimensional periodicity along the
direction perpendicular to the multilayer film. Off-axis to the equator, reflection spots appear,
which originate from the packing of the lipid acyl chains. Instead of films, multilamellar
vesicles in solution can be studied. The lipids form onion-like-shaped spherical structures of
stacked bilayers with an interlamellar water layer in between. The diffraction pattern then
consists of concentric equidistant rings centred around the origin of the diffraction pattern.

In the following, we focus on the solution scattering of multilamellar lipid systems. As
regards the diffraction of x-rays, the lipid–water dispersions discussed here are equivalent
to powder samples that are composed of many randomly oriented microcrystals. Thus,
Bragg’s condition is automatically fulfilled and all possible diffraction peaks are simultaneously
recorded. While the positions of the diffraction peaks are related to periodic distances within
the lyotropic lipid mesophase, their sharpness or width reflects the extent of this periodicity
over large distances. The measured reciprocal spacings are given by

s = 2

λ
sin θ (1)

(2θ : scattering angle; λ: wavelength of radiation). If a lipid–water phase is lacking any periodic
structure, only diffuse small-angle scattering is observed. Lamellar lipid–water mesophases
(denoted as L or P) form alternating layers of lipid and water molecules. This quasi-one-
dimensional periodic structure exhibits diffraction patterns in the small-angle regime that are
described by the equation

sn = n
1

d
(2)

where n = 1, 2, 3, . . . and d is the lamellar repeat distance of this one-dimensional lattice,
which is the thickness of the lipid bilayer plus that of the adjacent water layer.



S332 R Winter and R Köhling

Table 1. Miller indices (hkl) and the ratio of Bragg peak positions for cubic (Q) and lamellar (L)
lipid structures.

P4332 Pm3n Pn3m Fm3m Fd3m Im3m Ia3d
(Q212) (Q223) (Q224) (Q225) (Q227) (Q229) (Q230) L Ratio

100 1
110 110 110 110

√
2

111 111 111 111
√

3
200 200 200 200 200 2

210 210
√

5
211 211 211 211 211

√
6

220 220 220 220 220 220 220
√

8
221 221 300 3
310 310 310 310

√
10

311 311 311 311
√

11
222 222 222 222 222 222

√
12

320 320
√

13
321 321 321 321 321

√
14

400 400 400 400 400 400 400 400 4
410 410 410

√
17

411 411 411 411
√

18
331 331 331 331

√
19

420 420 420 420 420 420
√

20
421 421 421

√
21

332 332 332 332
√

22

Nonlamellar lipid mesophases (figure 1) may also be identified by their characteristic
small-angle diffraction pattern. The structure of the inverse hexagonal lipid–water mesophase
(denoted as HII) is based on cylindrical water rods, which are surrounded by lipid monolayers.
The rods are packed in a two-dimensional hexagonal lattice with Bragg peaks positioned at

s = 2√
3a

√
h2 + k2 + hk. (3)

The lattice constant a is here the distance between the centres of two neighbouring rods and
h, k are the Miller indices. The hexagonal lipid phases are easily distinguished from lamellar
phases by their ratio of Bragg peak positions, which is 1:

√
3:2: . . ..

Bragg peaks of cubic lipid structures may be observed at

s = 1

a

√
h2 + k2 + l2 (4)

where a is the cubic lattice constant. The Miller indices h, k, l depend on the lattice type
(primitive, body centred, face centred) and the symmetry elements of the cubic structure. In
table 1 the relative Bragg peak positions of a variety of lipid mesophases including cubic phases
are summarized.

The Bragg peaks appearing in addition in the wide-angle region are related to the packing
of the lipid acyl chains in a monolayer. Generally, this packing can be described as a centred
rectangular lattice with lattice constants arec and brec, which are calculated from the observed
d-spacings using

arec = 2d20 (5)

brec = d11√
1 − [d11/(2d20)]2

. (6)
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When the lipid chains are rigidly packed in a hexagonal lattice, only a single wide-angle Bragg
peak is usually observed. Then, the lattice constant (chain–chain distance) may be obtained
from equation (3). In the case of fluid-like disordered lipid layers, only a very broad wide-angle
peak is observed around s ≈ 0.25 Å−1.

3.2. SAXS studies using solutions of biological macromolecules (in particular proteins)

Generally, the SAXS technique provides us with structural information on inhomogeneities
of the electron density with characteristic dimensions between about 10 and 1000 Å. The
applications cover fields of all kinds, including alloys, porous media, liquid crystals, polymers,
colloids, micelles, microemulsions and biomolecular systems, such as proteins in solution [18–
22]. We will focus on the latter class of substances.

The systems that we are interested in have distances that are large compared to interatomic
distances. As a consequence, we describe the scattering objects using a continuous function
of electron density as determined by the chemical composition of the object. If there are no
strong variations of electron density over the molecule (e.g., a native protein), a mean value is
assumed. In the case of a more complex and heterogeneous particle, several levels of electron
density can be introduced (e.g., RNA in a viral protein capsid). In dilute solution, the scattering
objects can be considered to be isolated (intraparticle scattering), whereas in a concentrated
solution, the interaction between the particles, displaying spatial correlations, also contributes
to the scattering intensity (interparticle scattering).

In the following we discuss the theoretical aspects of SAXS as relevant for dilute systems
only [18–25]. We largely follow the nomenclature used by Svergun et al [17, 25]. If we place
a sample in an x-ray beam, only its electrons will scatter. We consider only elastic scattering
processes, i.e., scattering without exchange of energy between the photon and the electron. Let
ρ(r) be the electron density of the sample at point r and s0 the characteristic wavevector of
the incident x-ray beam (with magnitude |s0| = 1/λ, where λ is the wavelength of the x-rays).
At distances much greater than the size of the sample, the expression for the total scattering
amplitude of the scattered x-rays at a point s is

F(s) =
∫

Vr

ρ(r)e−2iπr·s dVr (7)

where s = s1 −s0 is the scattering vector, s1 is the wavevector of the scattered wave and Vr is
the irradiated volume of the sample (particle). The scattering geometry is depicted in figure 3.
According to equation (7), F(s) is the Fourier transform of the electron density distribution
ρ(r). If the scattering angle is 2θ , we obtain in the case of elastic scattering, where |s0| = |s1|,
for the modulus of the scattering vector (see figure 3)

s = |s| = 2 sin θ

λ

∼= 2θ

λ
(8)

for small scattering angles (2θ is generally <5◦). Sometimes, in particular in the neutron
scattering literature, the so-called momentum transfer Q is also used to describe the scattering
process, which is Q = 2πs.

For s = 0, we obtain

F(0) =
∫

Vr

ρ(r) dVr = ne (9)

where ne is the number of electrons in the volume Vr .
The detector measures the scattered intensity only, which is given by the square of the

amplitude resulting from the summation of all the amplitudes of scattered x-rays:

I (s) = F(s)F∗(s) = |F(s)|2 =
∫

Vr

∫
Vr′

ρ(r)ρ(r′)e−2iπ(r−r′)·s dVr dVr ′ (10)
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(a)

(b)

detector

X-ray beam

sample
2

2

s

s
1

s0

s1 s0= –

Figure 3. Schematic representations of the scattering process (a) and definition of the scattering
vector s.

which involves the separation R = (r − r′) of every pair of scattering points and F∗(s) is the
complex conjugate of F(s). (We assume the scattering intensity to be normalized to that of a
single electron, taking into account also the polarization factor of the radiation and absorption
by the sample.)

The characteristic and pair-distance distribution function. Let Vrγ (R) be the autocorrelation
function of the electron density ρ(r) of the sample (particle), defined by

γ (R) = 1

Vr

∫
Vr

ρ(r)ρ(r + R) dVr (11)

which is called the characteristic function given by Debye and Bueche in 1949; then it follows
from equations (10) and (11) that

I (s) =
∫

V
V γ (R)e−2iπR·s dV . (12)

In the case of particles dissolved in a solvent, the scattering originates from the contrast
in electron density between the particle and the surrounding solvent, which is supposed to be
homogeneous (having a constant electron density ρ0). Hence,

�ρ(r) = ρ(r) − ρ0 and F(s) =
∫

Vr

�ρ(r)e−2iπr·s dVr . (13)

Solutions of biological macromolecules, which are essentially composed of light atoms
(H, C, N, O, S and P) in water, display rather little contrast of electron density and therefore
scatter weakly. This explains the advantage offered by x-ray sources with a very high flux,
such as those provided by synchrotron radiation from storage rings.

In the case of solution scattering, the diluted sample is isotropic as the particles take
all possible orientations with respect to the direction of the incident beam. Hence, only the
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spherical average of the intensity is experimentally accessible, I (s) = 〈I (s)〉, where 〈· · ·〉
signifies the spherical average. After averaging over all orientations with respect to the beam,
using

〈e−i2πRs〉 = sin(2π Rs)

2π Rs
(14)

(as given by Debye in 1915), we obtain

I (s) = 4π

∫ ∞

0
p(R)

sin(2π Rs)

2π Rs
dR (15)

where

p(R) = R2V γ (R) = 1

π

∫ ∞

0
Rs I (s) sin(2π Rs) ds = 1

2π2

∫ ∞

0
RQI (Q) sin(Q R) dQ. (16)

p(R) is called the pair-distance distribution function and is directly connected to the measured
scattering intensity. For homogeneous particles, ρ(R) = constant, and p(R) is the histogram
of distances between all pairs of points (volume elements) of the particle.

In the following, we assume that we have a monodisperse solution, i.e., all particles are
identical. Luckily, this holds true for most biological samples, such as native proteins or viruses.
In the case of a solution of a denatured protein, the solution is chemically monodisperse (one
molecular species), but polydisperse in shape (the molecules adopt many different disordered
conformations). Therefore, there is only one kind of particle in solution with an associated
electron density distribution ρ(R) and a scattered intensity I1(s). In sufficiently diluted
solution, all particles scatter independently and the resulting intensity scattered by the sample
is simply the sum of all the contributions from individual molecules:

I (s) = N I1(s) (17)

where N is the number of particles in the sample.
The scattered intensity at s = 0 is given by

I1(0) =
∫

Vr

∫
Vr′

�ρ(r)�ρ(r′) dVr dVr ′ = �n2
e (18)

where �ne is thus the number of excess electrons, i.e. the difference between the number of
electrons of the particle and that of the volume of solvent (mostly water or buffer) displaced
by the molecule. If the intensity of the incident beam is known on an absolute scale, then
the intensity at the (extrapolated) origin (s = 0) provides a determination of the molecular
mass of the particle, provided that the particle concentration and specific volume as well as
the scattering length density of the solvent are known. This requires the absolute scattered
intensity and the excess scattering density to be measured with high accuracy, however.

Guinier approximation. If the scattered intensity is expanded in powers of s2 close to the
origin (s = 0), the expansion can be restricted to the first terms:

I (s) = I (0)

[
1 − 4π2

3
R2

gs2 + · · ·
]

∼= I (0) exp

(
−4π2

3
R2

gs2

)
= I (0) exp

(
−1

3
R2

g Q2

)
. (19)

The Guinier approximation replaces the sine expansion with the exponential function. Hence,
in the vicinity of the origin, the scattering curve of any isolated particle can be approximated
by a Gaussian, the width of which is proportional to the square of the radius of gyration of the
particle, Rg, defined by

R2
g =

∫
Vr

�ρ(r)r2 dVr∫
Vr

�ρ(r) dVr
(20)
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where the origin of vectors r is now taken to be the centre of mass of the particle. In practice, a
linearized representation will be used to determine Rg, by plotting ln[I (s)] versus s2 (Guinier
plot). Linear regression yields the radius of gyration from the slope. The validity of the
Guinier region is given by the particle’s size and shape. In the case of spherical particles, where
Rg = (3/5)1/2 R (R radius of particle), the Guinier approximation is valid up to s Rg ≈ 0.1.
If several species are present in solution (e.g. oligomers of proteins due to aggregation), their
scattering adds up and, in most cases, the value of Rg for the monomer cannot be unambiguously
retrieved. Furthermore, the determination of the radius of gyration will be erroneous if the
interactions between particles are not negligible. To keep them to a minimum, experiments
have to be performed at several concentrations, which should be as low as possible, and then
extrapolation to zero concentration is performed.

Global particle scattering. The particle and solvent are assumed to be homogeneous and
have constant electron densities. The scattering factor of a particle in dilute solution is then
given by its intraparticle form factor P(s) = F(s)F∗(s), which can be calculated for simple
homogeneous triaxial bodies. For a sphere of radius R (e.g. a homogeneous spherical micelle),
we obtain

I1(x)sphere

I (0)
= P(x)sphere =

[
3(sin x − x cos x)

x3

]2

(21)

where x = 2πs R = Q R, which approaches P(s) ∼ s−4 at large s values.
Similar equations are given for hollow spheres, cylinders and ellipsoids of revolution as

well as for polymer chains [18, 19, 23, 25].
In the case of an unfolded protein, the description in terms of a compact, more or less

globular particle is no longer valid, and models developed for polymers may be better suited.
A Gaussian chain, the simplest model, is described as a linear association of monomers of
constant length with only short range interactions between adjacent units and no correlations
between the adjacent segments. The distance between any pair of units at a sufficient distance
along the chain follows a Gaussian distribution. Debye established the expression for the
scattering intensity of a Gaussian chain:

I1(s)

I (0)
= 2(e−x + x − 1)

x2
(22)

where x = (2πs Rg)
2. The scattering intensity thus depends on a single parameter, the radius

of gyration Rg. The Guinier approximation still holds for such an expanded structure, but its
range of validity is restricted to the immediate vicinity of the origin. At large s, the scattering
intensity has the following limit:

lim
s→∞[s2 I (s)] =

2[1 − 1
s2 R2

g
]

R2
g

. (23)

I (s) varies as s−2 instead of showing the s−4 behaviour of the Porod law for globular particles.
This difference in asymptotic behaviour provides a way of monitoring the degree of folding of
a protein upon denaturation induced by temperature, pressure, pH or a denaturing agent. It is
most conveniently represented using the so-called Kratky plot of s2I (s)versus s. The scattering
curve of a globular particle will exhibit a distinctive bell-shaped curve with a maximum, the
position of which depends on the radius of gyration, while a Gaussian chain shows a plateau at
larger s values. Real chains have longer extensions due to the stiffness of bonds and intrachain
interactions (excluded volume effect). Approximate expressions for their scattering curves are
available for such chains as well (e.g. [18, 25] and references therein).
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Porod invariant. The autocorrelation function, as given by equation (16), at R = 0, is

V γ (0) = 2
∫ ∞

0
s2 I (s) ds (24)

while, from the definition of γ (R), we obtain

γ (0) = 1

V

∫
Vr

�ρ(r)�ρ(r) dVr = �ρ2 (25)

so

V γ (0) = V �ρ2 = Q̃. (26)

Hence, integrating s2 I (s) twice over the whole reciprocal space s yields an invariant, Q̃, the
so-called Porod invariant. It is related to the mean square contrast of the electron density of
the particle, �ρ2, irrespective of its structure.

Hydrated volume. The x-ray scattering pattern contains information not only on the size and
shape of the particles, but also on their interactions within the solvent. Hence, one is able to
measure the hydrated volume of the particle. The intensity I1(0) scattered at the origin by a
particle (equation (18)) can be written as

I1(0) = (V �ρ)2 (27)

where V is the volume of the hydrated particle. If the particle has a homogeneous density,
(�ρ)2 = �ρ2, we obtain for the hydrated volume of the particle

V =
√

I1(0)

γ (0)
= I1(0)

Q̃
. (28)

The asymptotic regime. If the particle has a uniform electron density distribution and a sharp
interface with the solvent,Porod showed that the asymptotic behaviour of the scattered intensity
is given by

8π3 lim
s→∞[s4 I1(s)] = As�ρ2 + Cs4 (29)

where As is the area of the interface between the solute and the solvent and C is a correction
term, taking into account the existence of short distance density fluctuations as well as
experimental uncertainties of the scattering intensity at large angles.

Data processing. The main task of the data processing is to restore the scattering intensity
I (s) from the experimental data set Iexp(s). For monodisperse systems, I (s) is related to the
pair-distance distribution function of the particle p(r) by the Fourier transform

I (s) = 4π

∫ Dmax

0
p(r)

sin(2πsr)

2πsr
dr (30)

where Dmax is the maximum diameter of the particle. This is equation (15), but the upper bound
of the integral is now Dmax. The function p(r) measures the distribution of pairwise distances
within the volume of the scattering particle, or, in other words, is the density contrast pair
correlation function of the molecule. The function p(r) contains the same information as I (s)
and the data processing can be done ‘indirectly’ by restoring the p(r). In this ‘indirect Fourier
transform’ approach, which was first introduced by Glatter [19], p(r) is expressed as a linear
combination of spline functions, as a Fourier series or as Hermite polynomials [18, 25–27]
and this method is superior to other data processing techniques.
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The radius of gyration is derived from p(r) through the relationship

R2
g =

∫
r2 p(r) dr

2
∫

p(r) dr
. (31)

This expression, making use of the whole measured scattering curve, is much less sensitive
to factors such as the presence of residual interparticle interactions or a small amount of
aggregates than the computationally more straightforward Guinier relation.

In keeping with the low resolution of the solution scattering studies, the data interpretation
is usually performed in terms of homogeneous bodies. The standard trial-and-error approach
involves the evaluation of the scattering patterns from different models and their comparison
with the experimental data. The reliability and/or resolution of the shape restoration can be
enhanced if information about the particle is available. A necessary prerequisite is the accurate
evaluation of scattering patterns from atomic models taking into account the influence of the
solvent. Several helpful programs are available today. The program CRYSOL [26] calculates
the x-ray scattering curves from atomic models (e.g. the crystal structure from a PDB file)
taking into account also the scattering from a ∼3 Å solvation shell (interestingly, the scattering
density of water in the border layer of proteins is on average typically 1.05–1.25 times that
of the bulk, which is due to a higher density of the bound solvent). The program DAMMIN
restores the ab initio low resolution shape and internal structure of biological macromolecules
in solution from isotropic scattering,using a multiphase model of the particle built from densely
packed dummy atoms and simulated annealing is employed to find a configuration that fits the
data minimizing the interfacial area [25, 27, 28].

4. Examples

4.1. Lipid bilayers and nonlamellar lipid phases

Lyotropic lipid mesophases are organized molecular systems formed by amphiphilic molecules,
such as phospholipids, in the presence of water. They exhibit a rich structural polymorphism,
depending on their molecular structure and environmental conditions, such as water content,
pH, ionic strength, temperature and pressure [29–33]. The basic structural element of biological
membranes consists of a lamellar phospholipid bilayer matrix. In the lamellar structure,
the interfaces are flat and are periodically stacked forming multilamellar vesicles. Two
neighbouring lipid bilayers are separated by a water layer of about 10–20 Å.

Saturated phospholipids often exhibit two thermotropic lamellar phase transitions, a gel
to gel (Lβ ′ /Pβ ′) pretransition and a gel to liquid crystal (Pβ ′ /Lα) main transition at a higher
temperature Tm (for the structures, see figure 1). In the fluid-like Lα phase, the acyl chains of
the lipid bilayers are conformationally disordered (they contain more gauche conformations
that result from rotations around C–C bonds by +120◦ or −120◦), whereas in the gel phases, the
chains are more extended and ordered. Because the average end-to-end distance of disordered
hydrocarbon chains in the Lα phase is smaller than that of ordered (all-trans) chains, the bilayer
becomes thinner during melting at the Pβ ′ /Lα transition, even though the lipid volume increases
by about 3% [34]. In addition to these thermotropic phase transitions, pressure induced phase
transformations have been observed ([13] and references therein). Upon compression, the
lipids easily adopt to volume restriction by changing their conformation and packing. Lipid
systems are these biological systems which are most pressure sensitive and in general they
easily undergo phase transformations under changes of environmental conditions.

As an example, figure 4(a) shows small-angle diffraction data for a DPPC bilayer in excess
water as a function of temperature. Clearly the pretransition as well as the main lipid phase
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(a) (b)

Figure 4. Typical temperature (a) and pressure (b) dependent (at T = 55 ◦C) small-angle x-ray
scattering patterns of DPPC bilayers in excess water. Only one or two orders of lamellar Bragg
reflections are visible.

transition are observed as relatively sharp shifts of the Bragg peak positions at about 35 and
42 ◦C, respectively. The lamellar lattice constant increases from ∼63 Å in the Lβ ′ phase to
∼72 Å in the ripple gel phase Pβ ′ . In the fluid Lα phase, the Bragg peaks are further apart,
which means that the bilayer plus water layer becomes smaller. This is a result of a reduction
in the thickness of the lipid acyl chains due to segmental disorder. Because of the highly
disordered chains in the fluid Lα phase, the bilayer thickness decreases to a lattice constant
of about 66 Å. Figure 4(b) shows some pressure dependent data. In DPPC dispersions at
55 ◦C, a shift to lower scattering vectors together with a change in the lineshape is observed
at 800 bar which is due to the pressure induced Lα to Pβ ′ phase transition; the corresponding
lattice constant increases from 68 to 71 Å. Further increase in pressure leads to the formation
of a pressure induced interdigitated gel phase, Lβi, around 1400 bar, where the lipid acyl chains
from opposing monolayers partially interpenetrate, which leads to a decrease of the lamellar
repeat period to about 50 Å. At ∼2.8 kbar, the transition to the gel 3 phase occurs at this
temperature with a lattice constant that is about 10 Å larger [35, 36].

We note that applying high pressure can lead to the formation of additional gel phases,
which are not observed under ambient pressure conditions, such as the interdigitated high
pressure gel phase Lβi found for phospholipid bilayers with acyl chain lengths �C16 [36, 37].
To illustrate this phase variety, the results of a detailed x-ray diffraction and FT-IR spectroscopy
study of the p, T phase diagram of DPPC in excess water are shown in figure 5 [36]. The
structures of the Lα, Pβ ′ (gel 1), Lβ ′ (gel 2), gel 3, gel 4 and gel 5 phases are illustrated
schematically in figures 1 and 5. In the gel 5 phase the lipid molecules have lost essentially
all the interlamellar hydrating water, which now coexists as bulk frozen water (ice VI).

It is now well known that many biological lipid molecules also form nonlamellar liquid
crystalline phases (see figure 1) [31–33, 39]. Lipids, which can adopt a hexagonal phase,
are present at substantial levels in biological membranes, usually with at least 30 mol%
of the total lipids. It is generally assumed that the nonlamellar lipid structures, such as
the inverted hexagonal (HII) and cubic (QII) lipid phases, are also of biological relevance.
Fundamental cell processes, such as endocytosis and exocytosis, fat digestion, membrane
budding and fusion, involve a rearrangement of biological membranes where nonlamellar
lipid structures are probably involved. Also static cubic structures (cubic membranes) might
occur in biological cells [33, 38, 39]. Recently, cubic lipid phases became also of interest for
crystallizing membrane proteins [33]. The structures of the most common cubic phases, QG

II ,
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Figure 5. The T , p phase diagram of DPPC bilayers in excess water and a schematic drawing of
the lamellar lattice constant and lipid packing in the bilayer plane of DPPC gel phases at 23 ◦C. It
is noteworthy that an additional crystalline gel phase (Lc) can be induced in the low temperature
regime after prolonged cooling.

QD
II and QP

II, are closely related to the Schoen gyroid (G), the Schwarz D and the Schwarz P
infinite periodic minimal surfaces (IPMS). An IPMS is an intersection-free surface periodic in
three dimensions with a mean curvature that is everywhere zero. Draping a lipid bilayer onto
these IMPS leads to three lipid inverse cubic phases of crystallographic space groups Im3m
(P), Pn3m (D) and Ia3d (G), respectively (figure 1). The surfaces are related to each other by
a Bonnet transformation, which is a one-to-one isometric mapping between identical surface
patches. The surface that sits at the lipid bilayer mid-plane separates two interpenetrating but
not connected water networks.

We will discuss lipid–water systems with the lipids taken from different types of
amphiphilic molecule. In contrast to DOPC, which shows a lamellar Lβ–Lα transition only, the
corresponding lipid DOPE with the smaller head-group ethanolamine exhibits an additional
phase transition from the lamellar Lα to the nonlamellar inverse hexagonal HII phase, when it
is dispersed in water. As pressure forces a closer packing of the lipid chains, which results in
a decreased number of gauche bonds and kinks in the chains, both transition temperatures, of
the Lβ–Lα and the Lα–HII transitions, increase with increasing pressure. In figure 6, the T ,
p phase diagram of DOPE in excess water is displayed. The slope of the Lα–HII transition is
almost three times larger than that of the Lβ–Lα transition; values of about 40 and 14 ◦C kbar−1
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Figure 6. The T , p phase diagram of DOPE (molecular structure at the top) in excess water.
The dashed arrows indicate how by using fast T or p jumps the kinetics of the different phase
transformations could be studied.

have been found, respectively. The reason that the former transition has such a strong pressure
dependence could be conjectured to be the strong pressure dependence of the chain length and
volume of its unsaturated chains.

Finally, one further example of single-component lyotropic lipid systems exhibiting
nonlamellar phases is discussed: ME and MO dispersed in excess water. Their hydrocarbon
chain which contains one double bond, at the ninth carbon atom, is attached to the first carbon
atom of glycerol. ME and MO differ only in the configuration of the double bond in their single
acyl chain, which is trans in ME and cis in MO. In contrast to the preceding example, ME and
MO form spontaneously cubic phases over wide ranges of temperature and hydration [40–43].
The T , p phase diagrams of ME and MO in excess water are presented in figure 7, in addition
to some characteristic diffraction patterns for MO. As can clearly be seen, the small change
in the acyl chain double-bond configuration, from trans (ME) to cis (MO), causes a dramatic
change in the observed phase behaviour. In the system MO–water, the cubic QD

II phase is stable
over wide ranges of temperature and pressure. The cis configuration of MO leads to a more
wedge-like molecular shape and a strong tendency for a MO monolayer to curve toward the
water. Hence, the formation of lamellar phases, which requires a cylindrical molecular shape,
is disfavoured.

Not only the nature of phospholipid phase transitions, but also the way in which they
are affected by the incorporation of other species interacting with these membranes has
attracted considerable experimental and theoretical attention. Firstly, they intimately reflect the
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Figure 7. The T , p phase diagram of (a) ME and (b) MO in excess water. (c) As typical examples
for diffraction patterns, the small- and wide-angle scattering intensity of a 20 wt% MO–H2O
dispersion is shown at selected temperatures. At low temperature, the (110), (111), (200), (211),
(220) and (221) reflections of the cubic Pn3m phase are visible. At about 95 ◦C, reflections which
are spaced in the ratio 1:(3)1/2:2, corresponding to the (10), (11) and (20) reflections of the HII
structure, appear. The broad wide-angle scattering peak reflects the disordered packing of the acyl
chain, which is typical for the fluid-like chain in both of these lipid phases.

molecular interactions of the membrane and may thus help in understanding membrane systems
and function on a molecular level. Secondly, the addition of steroids,peptides, anaesthetics and
drugs to membrane systems is of biological and pharmacological relevance. Generally, changes
in lipid conformation, phase separation or transitions to other lamellar or to nonlamellar phases
can be observed upon incorporation of additives into lipid bilayer membranes. For typical
examples, see [29, 30, 13, 44–48].

4.2. Kinetics of phase transformations in lipid systems

Phase transitions between lipid mesophases must be associated with deformations of the
interfaces which, very often, imply also their fragmentation and fusion with the result that not
only does the topology change,but so also does the symmetry of the lipid aggregate. Depending
on the topology of the structures involved, transition phenomena of different complexity are
observed. In addition, the transition rates and mechanisms depend on the level of hydration
of the structures involved and on the forces driving the transition. We used the synchrotron
x-ray diffraction technique to record the temporal evolution of the structural changes after
induction of the phase transition by a fast jump across the phase boundaries [49, 50]. As
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Figure 8. Diffraction patterns of (a) DEPC in excess water after a pressure jump from 200 to
370 bar at 18 ◦C and (b) DOPE in excess water after a pressure jump from 300 to 110 bar at 20 ◦C.

indicated in figure 6, principally, temperature (by fast laser heating [51]) or pressure jumps can
be used to trigger the lipid phase transitions [49–55]. We have used pressure jump techniques in
conjunction with synchrotron x-ray diffraction to study the time course of lipid phase transitions
and to search for possible transient intermediate structures, with a view to unravelling the
underlying transition mechanisms. We discuss two representative examples.

Experiments for investigating the lamellar–HII transition kinetics have been performed,
for example, on DOPE dispersions. The T , p phase diagram of DOPE in excess water
is depicted in figure 6. Figure 8 shows the diffraction patterns of DOPE at 20 ◦C after
a pressure jump from 300 to 110 bar. Clearly, the (001) reflection of the Lα phase and
the (10) reflection of the developing HII phase can be identified. In this case, a two-state
mechanism is observed. Interestingly, we find that successive pressure jumps lead to an
acceleration of the phase transition kinetics. The half-transit time decays from 8.5 s for the
first pressure jump to 5.3 s after the fourth jump. After the pressure jump, an induction period
of several seconds is observed before the first Bragg reflections of the newly formed HII phase
appear. Upon successive pressure cycles, this induction period decreases. An explanation for
this phenomenon might be the formation of defect structures, such as inverted intermicellar
intermediates, which are formed during the pressure cycles and which have not healed between
successive pressure cycles. This observation also shows that the history of sample preparation
plays an essential role in lipid systems. Figure 9 exhibits the time course of lattice constants
and half-widths of the Bragg reflections of the Lα and HII phase after the pressure jump. After
20 ms the lattice constant of the Lα phase has slightly decreased, due to fast conformational
changes of the lipid molecules. After 250 ms, the lattice constant of the Lα phase, a(Lα),
decreases slowly to 50.6 Å. Following an induction period, the Bragg reflection of the HII

phase appears; a(HII) first decreases slightly and then increases again owing to water uptake
by 0.5 up to 73.9 Å within about 30 s. At the same time as the HII phase is formed, a(Lα)

decreases rapidly. The decrease in half-width of the (10) reflection of the HII phase with time
might be due to an elongation and more efficient packing of the micellar tubes forming the
hexagonal structure. As the fully hydrated HII phase needs more water than the lamellar phase
and the lattice constant a(HII) does not change significantly with time, one can assume that the
necessary water uptake occurs within the defect structures being formed during the induction
period. These transient structures do not lead to coherent scattering patterns, however.

As an example of an interlamellar phase transformation, we present pressure jump
experiments carried out in DEPC–water dispersions to study the Lβ–Lα gel to fluid main
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Figure 9. Lattice constants a and half-widths δ of the first-order Bragg reflections of the Lα phase
and the HII phase of DOPE in excess water after a pressure jump from 300 to 110 bar at 20 ◦C.

transition, which occurs at Tm = 12 ◦C at ambient pressure and which has a pressure
dependence of dTm/d p = 20 ◦C kbar−1. Selected SAXS diffraction patterns at 18 ◦C after a
pressure jump from 200 bar (Lα phase) to 370 bar (Lβ phase) are depicted in figure 8. An
intermediate structure is clearly observable in this case. The first-order (001) Bragg reflection
of the initial Lα phase (a = 66 Å) vanishes in the course of the pressure jump (<5 ms). The
first diffraction pattern collected after the pressure jump exhibits a Bragg reflection of a new
lamellar structure Lx with a slightly larger d value, which increases with time. The lattice
constant of the Lβ phase formed is 78 Å. The transition is complete after about 15 s. In
equilibrium measurements, no such intermediate lamellar structure is detectable.

Generally, as has been found in studies of pressure and temperature jump induced phase
transitions of other systems [49–55], the results show that the relaxation behaviour and the
kinetics of pressure induced lipid phase transformations depend drastically on the topology
of the lipid mesophase and also on the temperature and the driving force, i.e., the applied
pressure jump amplitude, �p. Often multicomponent kinetic behaviour is observed, with
short relaxation times (probably on the nanoseconds to microseconds timescale) in a burst
phase relating to the relaxation of the lipid acyl chain conformation in response to the pressure
change, which leads to the small changes in the observed lattice constants right after the
pressure jumps. The longer relaxation times measured here are due to the kinetic trapping of
the system. In most cases, the rate of the transition is limited by the transport and redistribution
of water into and in the new lipid phase, rather than being controlled by the time required for
a rearrangement of the lipid molecules. The obstruction factor for the different structures
controls the different kinetic components. In addition, nucleation phenomena and domain
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Figure 10. (a) A schematic illustration of the ‘stretching’ of water channel junctions during the
continuous transformation between the D and G cubic phases, which occur with no disruption of the
bilayer topology. A junction of four water channels in the QD

II phase is converted into two three-way
junctions in the QG

II phase. (b) A possible mechanism of membrane fusion: the monolayers of two
opposed lipid bilayers mix to form a stalk intermediate that expands radially to a trans monolayer
contact (TMC), leading to rupture as a result of curvature and interstitial stresses and finally to the
formation of a fusion pore.

size growth of the structures evolving play a role. Also, in particular cases a digression of
the mechanism of phase transformation observed under slow scanning equilibrium conditions
appears under high free energy gradients (here large pressure jump amplitudes) and the high
driving force may drive the system through a correlated ordered intermediate state.

In cases where the transition occurs without change in water content within the mesophase,
such as in the intercubic QG

II → QD
II transition of the system DLPC-LA (1:2) at a fixed

water composition, the kinetics may be much faster [53]. As a mechanism for this cubic–
cubic transformation, a stretching mechanism has been proposed whereby each fourfold
junction in the QD

II phase is formed by bringing together two threefold junctions in the QG
II

phase (figure 10(a)). Recently, it has been suggested that such continuous cubic transitions
could also involve noncubic (tetragonal, rhombohedral) distortions of the underlying minimal
surfaces, yet with the surfaces remaining minimal during the processes (see [55] and references
therein). The inverse bicontinuous cubic phases are of particular relevance to the mechanism
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of membrane fusion, which is a ubiquitous process in cell membranes. The reason for this is
that the fusion channel between bilayers is closely similar to the local structure of these cubic
phases. Indeed, lamellar to cubic phase transitions in lyotropic liquid crystals must occur by
a series of fusion events and the bicontinuous cubic phase structures may be viewed as 3D
lattices of such fusion pores [54, 55]. Figure 10(b) displays schematically the formation of a
fusion pore via a stalk intermediate, which might also play a role in the final step of biological
membrane fusion, which uses a variety of fusion proteins for approach and bending of the lipid
bilayers.

4.3. Pressure effects on proteins in solution

It has long been known that the application of high hydrostatic pressure results in the disruption
of the native protein structure due to the decrease in the volume of the protein–solvent
system upon unfolding [56–58]. Pressure denaturation studies thus provide a fundamental
thermodynamic parameter for protein unfolding, the volume change �V ◦

u , in addition to an
alternative method for perturbing the folded state and thus extracting its stability. A number of
reviews on effects of pressure on proteins discuss these volume changes in greater detail [3–6].
Denaturation is usually studied at atmospheric pressure using high temperature guanidinium
hydrochloride or urea as denaturants. However, interpretation of the results obtained using
such methods may be complicated by the facts that:

(1) varying the temperature changes both the volume and the thermal energy of the system at
the same time and

(2) the thermodynamic parameters of denaturation by guanidinium hydrochloride or urea are
influenced by the binding of these molecules to proteins.

By contrast, if denaturation is induced at constant temperature in the absence of chemical
denaturants, one can try to describe the change in protein Gibbs free energy as a function of
the interatomic distances in the protein molecule which, in turn, are changed by variations
in applied pressure. The use of pressure is also advantageous from a methodological point
of view: the transition to native conditions (renaturation) is achieved simply by releasing the
pressure and, in general, the effects of pressure on proteins are reversible and they are not
accompanied by aggregation. The net volume change on denaturation comprises the effects
of disruption of noncovalent bonds, changes in protein hydration, freeing of void volume and
conformational changes. The reduction in the net volume seems to be largely the result of the
disappearance of solvent-inaccessible voids inside the protein.

4.3.1. Equilibrium studies of protein unfolding. As an example, we present data on the
pressure induced unfolding and refolding of Staphylococcal nuclease (Snase). These studies
were performed using synchrotron small-angle x-ray scattering, which monitors changes in
the tertiary structural properties of the protein upon pressurization or depressurization. Snase
is a small protein of about 17.5 kDa containing 149 amino acids and no disulfide bonds. In the
crystalline state, the protein contains 26.2% helices, 24.8% β-sheets (barrel), 7.4% extended
chains, 24.8% turns and loops and 8.7% unordered chains (8.1% are uncertain). As an example
of a SAXS curve taken under high pressure conditions, figure 11(a) exhibits the diffraction
pattern of Snase at 1000 bar and 25 ◦C; figure 11(b) depicts the Guinier plot of native Snase
at room temperature as obtained form the SAXS data. Analysis of the high pressure SAXS
data reveals that over a pressure range from atmospheric pressure to approximately 3 kbar,
the radius of gyration Rg of the protein increases from a value near 17 Å for native Snase
twofold to a value near 35 Å (figure 12) [59, 60]. A large broadening of the pair-distance
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Figure 11. (a) Comparison of the SAXS curve of Snase (inset: native structure) calculated by
CRYSOL with the experimental data (open points) at 1000 bar and 25 ◦C. CRYSOL uses the
atomic coordinates stored in the file PDB Brookhaven data bank to calculate a three-dimensional
envelope which is surrounded by a virtual shell of solvent molecules (thickness 3 Å). The solid
curve represents the resulting scattering curve of the envelope including the solvent shell. The
intensity I (0) at Q = 0 and the background scattering intensity are the only parameters that have
been varied. (b) A Guinier plot of the SAXS data of native Snase at room temperature. Using
equation (19), a radius of gyration Rg of ∼17 Å is obtained.

distribution function p(r) is observed over the same range, indicating a transition from a
globular to a more ellipsoidal-like structure (figure 13). Complementary FT-IR measurements
show that the pressure induced denatured state above 3 kbar retains nonetheless some degree of
β-like secondary structure and the molecules cannot be described as a fully extended random
polypeptide coil (no typical Kratky plot), which is in accord with the SAXS results. Assuming
the pressure induced unfolding transition of Snase to occur essentially as a two-state process,
analysis of the concentration–pressure profiles yields a Gibbs free energy change for unfolding
of �G◦

u = 17±4 kJ mol−1 and a volume change for unfolding of �V ◦
u = −80±20 ml mol−1
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Figure 13. The pair-distance distribution function p(r) of Snase (1% (w/w), pH 5.5) at two
selected pressures, 1 and 4000 bar (T = 25 ◦C). The size of the protein shape increases from
about 46 × 46 × 49 Å3 to about 60 × 60 × 80 Å3. Within the envelope of the 1 bar structure, the
shape of the crystal structure of native Snase is embedded.

at ambient temperature and pressure. For comparison, temperature induced denaturation
involves a further unfolding of the protein molecule which is indicated by a larger Rg value
of 45 Å (figure 12) and significantly lower fractional intensities of IR bands associated with
secondary structure.

The pressure mid-points at several temperatures obtained from the FT-IR and SAXS
profiles are plotted as a phase diagram in figure 14 [59, 60]. It exhibits the curvature which
is typical of heat and cold denaturation of many monomeric proteins. The phase diagram
will certainly depend on the individual protein secondary structural composition and will be
more complicated for larger protein systems. Also additional regions in the phase diagram
may appear, such as an extended region at high temperatures where aggregation occurs. One
must also be aware of the fact that the unfolded states in the p–T plane can be of considerably
different structure, and that long-lived metastable phases may occur.
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Figure 14. The T , p stability diagram of Snase at pH 5.5.
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Figure 15. (a) Time evolution of the radius of gyration Rg of Snase (1% (w/w), pH 5.5) after a
negative pressure jump from 4000 to 800 bar. The fit of data to a single-exponential decay function
(curve) yields a time constant of 4.5 s. (b) The time dependence of the increase in Rg after a positive
pressure jump from 1500 to 3000 bar. The fit of the data to a single-exponential function (curve)
yields a time constant of 14 min.

4.3.2. Kinetic studies of the unfolding/refolding reaction of proteins. By crossing the phase
boundary by applying a p jump, the folding and refolding kinetics can be studied [12, 60].
The more detailed analysis of the kinetic SAXS data starts with the determination of the
radius of gyration, roughly with a Guinier plot and more accurately with the indirect Fourier
transformation. As can be seen in figure 15, the rapid decrease of pressure for a solution of
Snase at 25 ◦C from for example 4000 bar (denaturing conditions) to 800 bar (native conditions)
results in a relatively rapid decrease in the value of the radius of gyration, Rg, from near 29
to 18 Å. The observed pressure jump relaxation profile for the decrease in Rg fits well to a
single-exponential decay with a time constant τ of 4.5 s. In contrast, a positive pressure jump at
25 ◦C from 1500 bar (near-native conditions) to 3000 bar (fully denaturing conditions) results
in a very slow relaxation of Rg from 20 to 31 Å. As for the negative pressure jumps, the positive
pressure jump profile is well fitted by a single-exponential function, with a much longer time
constant of τ = 14 min.
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Figure 16. The time evolution of the radius of gyration Rg (including the solvation shell) of Snase
(1% (w/w), pH 5.5) after a pressure jump from 1 to 3.5 kbar at T = 25 ◦C. The displayed shapes
are calculated with the program DAMMIN assuming an initial spherical or oblate arrangement of
‘dummy atoms’. Both assumptions lead to comparable shapes. All other parameters are taken
from the GNOM output file (experimental data, fitted curve, error information, maximum radius
of the pair-distance distribution).

Analysis of the SAXS data with the program package GNOM, CRYSOL, DAMMIN
and viewing program MASSAH reveal a more detailed picture of structural changes during
the folding/unfolding process [17, 25–28]. The program GNOM is used to calculate the
pair-distance distribution function from the scattering data. The output data can be used
to start an ab initio shape determination, which is done by the program DAMMIN and a
three-dimensional shape model is generated. Figure 16 shows the time evolution of Rg for
Snase after a pressure jump from 1000 to 3500 bar as obtained by GNOM. At 1000 bar,
Rg ≈ 18.7 Å (taking into account the hydration sphere now) which is comparable to the result
obtained by CRYSOL (Rsolv

g = 19.4 Å), which is based on the x-ray crystal structure for the
native protein. Furthermore, the program DAMMIN is used to calculate shape models of the
transitional and unfolded states. They represent an average over the complete ensemble and
a time period of 10 ms (exposure time). DAMMIN begins the ab initio shape modelling with
a spherical or oblate three-dimensional array of ‘dummy atoms’. The maximum extension
of the pair-distance distribution serves as a scale for the positions of the atoms. With these
predictions a scattering curve can be calculated from this array. During the modelling process,
the arrangement of the ‘dummy atoms’ is varied until the calculated curve fits the result of the
previous GNOM calculations. Figure 16 also exhibits a series of shape models for Snase as
function of time during unfolding. Unlike the case for the folded state, certainly no structural
information with atomic resolution exists of the unfolded protein, which consists of an ensemble
of different more or less disordered states.

We find from an analysis of the kinetic data shown in figures 15 and 16 that the activation
volume for folding is large and positive (57 ± 4 mL mol−1) and that for unfolding seems to be
small and negative (−23±3 mL mol−1) [12, 60]. The volume of the protein–solvent system in
the transition state is thus significantly larger than in the unfolded state and somewhat smaller
than in the folded state, so the transition state lies closer to the folded than to the unfolded state
in terms of system volumes. The positive activation volume for the folding process, which is
responsible for the large increase in the relaxation time with pressure (allowing us to observe
this process without resorting to ultrafast methods), implies dehydration in the rate limiting
step for folding.
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The stage is now well set for further work addressing more complex questions, such as
the study of the folding reaction of oligomers and protein complex formation as well as for
studies of aggregation phenomena. Pressure studies might also lead to a better understanding
of the interactions that lead to aggregation and will thus enhance our ability to design inhibitors
and therapeutics for aggregation driven diseases, such as Alzheimer’s, Parkinson’s and prion
diseases. These examples clearly demonstrate that pressure dependent studies can help
delineate the free energy landscape of proteins and hence help elucidate which features are
essential in determining the uniqueness and stability of the native conformational state.
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